ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Huang, L. C. Carlson, W. Requieron, N. Rice, D. Hoover, M. Farrell, D. Goodin, A. Nikroo, J. Biener, M. Stadernann, S. W. Haan, D. Ho, C. Wild
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 377-386
Technical Paper | doi.org/10.13182/FST15-220
Articles are hosted by Taylor and Francis Online.
High-density carbon (HDC) is being evaluated as an alternative to the current National Ignition Facility (NIF) point-design ablator material (glow discharge plasma, or GDP, plastic) due to its high density and optimal opacity, which leads to a higher implosion velocity. Chemical-vapor-deposition–coated HDC capsules have a near perfect surface figure but a microscopically rough surface. After polishing, the surface becomes smooth at nanometer scales but has numerous micron-sized surface pits, whose volumes, morphology, and distribution must be quantified to guide NIF target selection. Traditional metrology tools for GDP surface defects, such as the atomic force microscope (AFM) based Spheremapper and a phase-shifting differential interferometer, lack the resolution to characterize these localized features. In this paper, we describe how this metrology challenge is met by developing automated surface metrology solutions based on a high-density (HD) AFM and a Leica confocal microscope. These tools are complementary in nature. HD-AFM has a 0.1-μm spatial resolution and determines the overall shape distortion and pit statistics by tracing great circles on a capsule with high throughput. The Leica confocal microscope maps the two-dimensional (2-D) surface at low magnification to find all large defects that could be missed by HD-AFM. Then, a high magnification scan inspects at a 0.3-μm lateral resolution to characterize the defect volume. These 2-D maps provide an opportunity for modeling the shell performance at the peak implosion velocity, thereby aiding capsule selection. These new and improved metrology tools provide quantitative data for the continual refinement of the NIF specifications for HDC capsules. Finally, we report on the development of a laser ablation tool that, when combined with the Leica confocal microscope, can identify, quantify, and laser-ablate GDP domes that do not meet NIF specifications.