ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Suhas Bhandarkar, Reny Paguio, Fred Elsner, Denise Hoover, Abbas Nikroo, Chris Guido
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 127-136
Technical Paper | doi.org/10.13182/FST15-245
Articles are hosted by Taylor and Francis Online.
In this paper, we describe the reasoning that leads us to focus on the so-called curing process where a solid poly(α-methylstyrene) (PAMS) shell is formed from the initial solution phase. We demonstrate the existence of a percolation zone at about 55 wt% PAMS, beyond which the roundness of the shell can be expected to be irreversible. Using a simple model and a few supporting experiments to account for the rate of mass transfer of the fluorobenzene solvent phase, we show that curing rate is determined almost entirely by just a short exposure, to the sweeping gas, of the shells that graze the free surface of the curing bath as they move around in it. We propose here that specific control of the curing conditions at percolation would enable rounder mandrels.