ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Suhas Bhandarkar, Jacob Betcher, Ryan Smith, Bruce Lairson, Travis Ayers
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 332-340
Technical Paper | doi.org/10.13182/FST15-218
Articles are hosted by Taylor and Francis Online.
Targets for inertial confinement fusion shots on the National Ignition Facility typically use thin polyimide films, ~500 nm, with a coating of 25 nm of aluminum as windows that seal the laser entrance hole. Their role is to contain the hohlraum gas and minimize the extraneous infrared radiation getting in. This is necessary to control precisely the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18 K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both room and cryogenic temperatures. The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.