ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
L. C. Carlson, M. A. Johnson, T. L. Bunn
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 141-153
Technical Paper | doi.org/10.13182/FST15-248
Articles are hosted by Taylor and Francis Online.
Topographical modifications of spherical surfaces are imprinted on National Ignition Facility target capsules by extending the capabilities of a recently developed full-surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density, and long reach of a focused laser beam to preimpose sinusoidal modulations on the outside surface of high-density carbon capsules and the inside surface of glow discharge polymer capsules. Sinusoidal modulations described in this paper have submicron to tens of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as the laser beam intensity profile, the material removal function, the starting surface figure, and the desired surface figure. The patterns are optimized to minimize surface roughness. In this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.