ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. P. Bernat, J. H. Campbell, N. Petta, I. Sakellari, S. Koo, J.-H. Yoo, C. Grigoropoulos
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 310-315
Technical Paper | doi.org/10.13182/FST15-219
Articles are hosted by Taylor and Francis Online.
Hollow cylindrical tubes grown directly from flat glass substrates as well as spherical glow-discharge-polymer substrates were made using two-photon polymerization. The tube diameters were as small as 10-μm outer diameter and 4- to 5-μm inner diameter, and lengths were as long as 450 μm. Such structures could conceivably be used as fill tubes on inertial confinement fusion capsules. Two resin materials were examined, giving tubes with different flexibilities. One resin was an organic-inorganic hybrid silicon-zirconium sol gel, the second being Ormocomp, a commercially available ultraviolet-curable material. The strength of attachment of the zirconium-based sol gel tubes to their substrates was measured to be around 100 MPa. The times measured to remove uncured resins from high-aspect-ratio tubes during the development process were several hours.