ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Claudia M. Shuldberg, Michael E. Schoff, Hongwei Xu, Noel L. Alfonso, Erwin Castillo, Jay W. Crippen, Martin L. Hoppe Sr., Michael P. Farrell
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 164-172
Technical Paper | doi.org/10.13182/FST15-231
Articles are hosted by Taylor and Francis Online.
The fabrication of three multilayer Omega-scale capsule designs with combinations of materials such as beryllium, silicon, tungsten, and copper were evaluated as part of the fabrication and delivery process. These opaque capsule designs presented characterization challenges in that nominal optical characterization techniques for Omega-scale designs were not sufficient to fully characterize the capsules. Alternate techniques such as X-ray fluorescence, radiography, scanning electron microscopy, and spectroscopy needed to be utilized in order to characterize these capsule designs. Additionally, the permeability of each material varies; therefore, each capsule design required a different approach to fill the capsule for the experiment. Three techniques were used to deliver gas-filled capsules to the experimental teams: (a) filling through the drill hole, sealing with glue under pressure, and minimizing the glue mass using laser ablation; (b) attaching a capsule fill tube assembly into the drill hole; and (c) gas permeation through the wall. The issues encountered with these techniques and their solutions are presented.