ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Claudia M. Shuldberg, Michael E. Schoff, Hongwei Xu, Noel L. Alfonso, Erwin Castillo, Jay W. Crippen, Martin L. Hoppe Sr., Michael P. Farrell
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 164-172
Technical Paper | doi.org/10.13182/FST15-231
Articles are hosted by Taylor and Francis Online.
The fabrication of three multilayer Omega-scale capsule designs with combinations of materials such as beryllium, silicon, tungsten, and copper were evaluated as part of the fabrication and delivery process. These opaque capsule designs presented characterization challenges in that nominal optical characterization techniques for Omega-scale designs were not sufficient to fully characterize the capsules. Alternate techniques such as X-ray fluorescence, radiography, scanning electron microscopy, and spectroscopy needed to be utilized in order to characterize these capsule designs. Additionally, the permeability of each material varies; therefore, each capsule design required a different approach to fill the capsule for the experiment. Three techniques were used to deliver gas-filled capsules to the experimental teams: (a) filling through the drill hole, sealing with glue under pressure, and minimizing the glue mass using laser ablation; (b) attaching a capsule fill tube assembly into the drill hole; and (c) gas permeation through the wall. The issues encountered with these techniques and their solutions are presented.