ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Le Tacon, A. Brodier, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 351-357
Technical Paper | doi.org/10.13182/FST15-240
Articles are hosted by Taylor and Francis Online.
Some experiments implemented on the Laser Megajoule facility (LMJ) require the use of the rare-earth (RE) elements, the lanthanides (57 < Z < 71). Rare-earth metals are known to be unstable under atmospheric conditions and some of them are extremely reactive with air. They may react with oxygen and humidity to form RE oxides. In the present work, we study the oxidation of different RE thin films (gadolinium, dysprosium, and praseodymium) prepared by physical vapor deposition. Energy-dispersion spectroscopy, scanning electron microscopy, Rutherford backscattering spectroscopy, and weight measurement are performed to characterize the corrosion mechanisms as a function of time and aging atmospheres (air, dry box, and vacuum). It appears that the oxidation kinetics depends on atomic number and microstructure of the films. Praseodymium coatings are very quickly corroded (in a few hours) when exposed to air and degrade to a yellow powder. Aluminum layers, used as a diffusion barrier, allow us to preserve praseodymium coatings over a period of several weeks when aging in a dry box. Gadolinium and dysprosium coatings (without a protective layer) are preserved from corrosion due to the formation of a passivation layer on their surface. Whatever Z, a dense microstructure permits us to limit the oxygen content and allows us to stabilize the residual stress.