ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
K.-J. Boehm, N. Hash, D. Barker, T. Döppner, M. P. Farrell, P. Fitzsimmons, D. Kaczala, D. Kraus, B. Maranville, M. Mauldin, P. Neumayer, K. Segraves
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 324-331
Technical Paper | doi.org/10.13182/FST15-242
Articles are hosted by Taylor and Francis Online.
Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility.
Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions.
A new construction process, based on a rapid prototype frame structure, was used to develop this target. Details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.