ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear waste: Trying again, with an approach that is flexible and vague
The Department of Energy has started over on the quest for a place to store used fuel. Its new goal, it says, is to foster a national conversation (although this might better be described as many local conversations) about a national problem that can only be solved at the local level with a “consent-based” approach. And while the department is touting the various milestones it has already reached on the way to an interim repository, the program is structured in a way that means its success will not be measurable for years.
K.-J. Boehm, N. Hash, D. Barker, T. Döppner, M. P. Farrell, P. Fitzsimmons, D. Kaczala, D. Kraus, B. Maranville, M. Mauldin, P. Neumayer, K. Segraves
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 324-331
Technical Paper | doi.org/10.13182/FST15-242
Articles are hosted by Taylor and Francis Online.
Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility.
Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions.
A new construction process, based on a rapid prototype frame structure, was used to develop this target. Details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.