ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Chan Liu, Ming-Jiu Ni, Nian-Mei Zhang
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 83-96
Technical Paper | doi.org/10.13182/FST15-141
Articles are hosted by Taylor and Francis Online.
Temporal instability of liquid-metal flow in a square duct is investigated using a two-dimensional Chebyshev collocation method. In this study, the flow is subjected to a transverse magnetic field. The wall of the duct perpendicular to the magnetic field and the left parallel wall is perfectly conducting whereas the right parallel wall is insulating. Neutral stability curves are obtained for different Hartmann numbers. The five influencing factors of the instability are analyzed by energy analysis of perturbations. With the increase of Hartmann number, the critical Reynolds number first decreases rapidly and then increases gradually. The turning point of the variation of Rec with Ha is at Ha ≈ 20.4. When Ha < 20.4, velocity shear near the inflection point plays a dominant role in leading to the flow instability. When Ha becomes >20.4, perturbations produced by the inflectional velocity profile and Tollmien-Schlichting waves in the side layer are elongated by the nonuniform velocity in transverse direction; thus, the flow instability is caused by the combined effect at a much lower Reynolds number.