ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
N. Hashimoto, R. L. Klueh, M. Ando, H. Tanigawa, T. Sawai, K. Shiba
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 490-494
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST44-490
Articles are hosted by Taylor and Francis Online.
In order to determine the contributions of different microstructural features to strength and to deformation mode, microstructure of deformed flat tensile specimens of irradiated reduced activation F82H (IEA heat) base metal (BM) and its tungsten inert-gas (TIG) weldments (weld metal and weld joint) were investigated by transmission electron microscopy (TEM), following fracture surface examination by scanning electron microscopy (SEM). After irradiation, the fracture surfaces of F82H BM and TIG weldment showed a martensitic mixed quasi-cleavage and ductile-dimple fracture. The microstructure of the deformed region of irradiated F82H BM contained dislocation channels. This suggests that dislocation channeling could be the dominant deformation mechanism in this steel, resulting in the loss of strain-hardening capacity. While, the necked region of the irradiated F82H TIG, where showed less hardening than F82H BM, showed deformation bands only. From these results, it is suggested that the pre-irradiation microstructure, especially the dislocation density, could affect the post-irradiation deformation mode.