ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Markus Rampp, Roland Preuss, Rainer Fischer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 1-13
Technical Paper | doi.org/10.13182/FST15-154
Articles are hosted by Taylor and Francis Online.
A new parallel equilibrium reconstruction code for tokamak plasmas—the Garching Parallel Equilibrium Code (GPEC)—is presented. GPEC allows one to compute equilibrium flux distributions sufficiently accurate to derive parameters for plasma control within 1 ms of run time, which enables real-time applications at the ASDEX Upgrade (AUG) experiment and other machines with a control cycle of at least this size. The underlying algorithms are based on the well-established off-line–analysis code CLISTE, following the classical concept of iteratively solving the Grad-Shafranov equation and feeding in diagnostic signals from the experiment. The new code adopts a hybrid parallelization scheme for computing the equilibrium flux distribution and extends the fast, shared-memory-parallel Poisson solver that we have described previously by a distributed computation of the individual Poisson problems corresponding to different basis functions. The code is based entirely on open-source software components and runs on standard server hardware and software environments. The real-time capability of GPEC is demonstrated by performing an off-line computation of a sequence of 1000 flux distributions that are taken from 1 s of operation of a typical AUG discharge and deriving the relevant control parameters with a time resolution of 1 ms. On the current server hardware, the new code allows employing a grid size of 32 × 64 zones for the spatial discretization and up to 15 basis functions. It takes into account about 90 diagnostic signals while using up to four equilibrium iterations and computing more than 20 plasma-control parameters, including the computationally expensive safety factor q on at least four different levels of the normalized flux.