ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
L. Hu, K. Chen, Y. Chen, S. Li, J. Shen, X. Sheng, L. Niu, Y. Cheng, J. Zhao
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 112-118
Technical Note | doi.org/10.13182/FST15-137
Articles are hosted by Taylor and Francis Online.
The radial X-ray camera (RXC) is designed to measure the poloidal profile of plasma X-ray emission with high spatial and temporal resolution. Its primary diagnostic role includes measuring low (m, n) magnetohydrodynamic modes, sawteeth and disruption precursors, H-mode, edge-localized modes, and L-H transition. The RXC comprises two subsystems, i.e., in-port and ex-port cameras that view the outer and core regions, respectively, through vertical slots in the diagnostics shield module of an equatorial port plug. Detailed camera design is in progress including design of the camera structure, electronics, data acquisition and control, calibration, and pretest on the EAST tokamak. The sight path and neutron shielding have been optimized. The secondary vacuum, heat insulation, cooling, positioning, and calibration have been designed. The structure analysis results for the external camera indicate that even under five times gravity acceleration, the maximum stress was still below the allowable stress. The heat analysis results indicate that the maximum temperature on the detector box was ~56°C, which is within the detector operation temperature limit. The neutronics analysis results indicate that the detectors can be operated during the whole deuterium-deuterium phase without detector replacement. The electronics group and instrumentation and control group have also made good progress.