ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
L. Hu, K. Chen, Y. Chen, S. Li, J. Shen, X. Sheng, L. Niu, Y. Cheng, J. Zhao
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 112-118
Technical Note | doi.org/10.13182/FST15-137
Articles are hosted by Taylor and Francis Online.
The radial X-ray camera (RXC) is designed to measure the poloidal profile of plasma X-ray emission with high spatial and temporal resolution. Its primary diagnostic role includes measuring low (m, n) magnetohydrodynamic modes, sawteeth and disruption precursors, H-mode, edge-localized modes, and L-H transition. The RXC comprises two subsystems, i.e., in-port and ex-port cameras that view the outer and core regions, respectively, through vertical slots in the diagnostics shield module of an equatorial port plug. Detailed camera design is in progress including design of the camera structure, electronics, data acquisition and control, calibration, and pretest on the EAST tokamak. The sight path and neutron shielding have been optimized. The secondary vacuum, heat insulation, cooling, positioning, and calibration have been designed. The structure analysis results for the external camera indicate that even under five times gravity acceleration, the maximum stress was still below the allowable stress. The heat analysis results indicate that the maximum temperature on the detector box was ~56°C, which is within the detector operation temperature limit. The neutronics analysis results indicate that the detectors can be operated during the whole deuterium-deuterium phase without detector replacement. The electronics group and instrumentation and control group have also made good progress.