ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Sehmer, K. Lackner, E. Strumberger, E. Fable, O. Kardaun, P. McCarthy, ASDEX Upgrade Team
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 73-82
Technical Paper | doi.org/10.13182/FST15-175
Articles are hosted by Taylor and Francis Online.
Modern tokamaks, operating with elongated plasmas, are unstable against vertical displacement. In the presence of conducting walls, this instability assumes the characteristics of a resistive wall mode (RWM), amenable to feedback stabilization. On ASDEX Upgrade (AUG), estimates of the growth rates, entering into the definition of safe operating regimes and into feedback parameter settings, were so far based on a rigid displacement (RD) model. However, for highly triangular plasmas this model was found to predict growth rates that were too small. A code package originally developed for general ideal magnetohydrodynamic (MHD) RWMs (NEMEC/CAS3D/STARWALL) and also capable of handling three-dimensional passive stabilizing loops (PSLs) was therefore applied to the n = 0 case for a large data sample of possible AUG equilibria. The comparison with the previously used rigid vertical displacement model showed that the latter gives a consistently lower limit to the growth rates for typical AUG parameters. A statistical analysis of the RD results brings out the stabilizing effect of triangularity. This stabilizing effect disappears, however, if generalized displacements are taken into account, like in the full MHD resistive wall model. The mode acquires a strong m = 2 component, which allows it also to elude partly the stabilization by the PSL. At low elongation, large triangularity produces even significant additional destabilization, with the mode predominantly m = 2, confined to the outer plasma layers, like predicted in references [see Rosen et al., Phys. Fluids, 18, 482 (1975) and Becker and Lackner, Proc. 6th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research, Vol. II, p. 401 (1977)]. These results explain the tendencies observed in AUG and will be taken into account in future analyses.