ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. B. Kukushkin, V. S. Neverov, A. G. Alekseev, S. W. Lisgo, A. S. Kukushkin
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 628-642
Technical Paper | doi.org/10.13182/FST15-186
Articles are hosted by Taylor and Francis Online.
The use of an all-metal first wall in future magnetic fusion reactors equipped with a divertor may impose severe limitations on the capabilities of optical diagnostics in the main chamber because of the divertor stray light (DSL) produced by reflections of the intense light emitted in the divertor. Here, we introduce a synthetic H-alpha diagnostics to estimate the errors of solutions of the inverse problems aimed at recovering the neutral hydrogen parameters (density and isotope ratio) in the scrape-off layer (SOL) with allowance for (a) strong DSL on the observation chords in the main chamber, (b) substantial deviation of the neutral atom velocity distribution function from a Maxwellian in the SOL, and (c) the data from the direct observation of the divertor. The results of recovering the relative contributions of all three sources to the signal along an observation chord in the main chamber (namely, from the high-field-side and low-field-side SOL sections of the observation chord, and the DSL), together with the isotope ratios in the SOL, are presented for the flattop stage of Q = 10 inductive operation of ITER.