ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
B. Sieglin, M. Faitsch, A. Herrmann, S. Martinov, T. Eich, ASDEX Upgrade Team
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 580-585
Technical Paper | doi.org/10.13182/FST15-183
Articles are hosted by Taylor and Francis Online.
Infrared (IR) thermography is a widely used tool in fusion research to study the thermal load onto plasma-facing components. In present-day fusion experiments with short-pulse duration, off-line data analysis is still feasible. For devices with long-pulse duration and actively cooled plasma-facing components, IR thermography is a common tool for machine protection. In future fusion devices with long-pulse duration, online data evaluation of the thermography measurement for additional physics studies is required. Real-time–capable IR thermography was developed at ASDEX Upgrade. The feasibility of real-time thermography is discussed in this work. The evaluation process from raw data to evaluated temperature and heat flux is shown. The real-time version of the THEODOR code allows online calculation of the heat flux. Exploiting the possibility of the IR system to change the integration time during acquisition opens up the possibility to have automated thermography. The current status of the thermography system at ASDEX Upgrade and future developments for its improvement are discussed.