ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Langenberg, J. Svensson, H. Thomsen, O. Marchuk, N. A. Pablant, R. Burhenn, R. C. Wolf
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 560-567
Technical Paper | doi.org/10.13182/FST15-181
Articles are hosted by Taylor and Francis Online.
Two X-ray imaging crystal spectrometer systems are currently being prepared for commissioning at the stellarator Wendelstein 7-X (W7-X). Both are expected to be ready for the first plasma operation in 2015. The spectrometers will provide line-integrated measurements of basic plasma parameters like ion and electron temperatures (Te,Ti), plasma rotation (vrot), and argon impurity densities. A forward model based on the designed installation geometries of both spectrometers has been performed using the Minerva Bayesian analysis framework. This model allows us to create synthesized data given radial profiles of plasma parameters for a wide range of different scenarios. To simulate line-integrated spectra as measured by the (virtual) detector, the geometry and Gaussian detection noise are assumed. The line-integrated plasma parameters are inferred within the framework from noisy spectral data using the maximum posterior method. The capabilities and limitations of the model and method are discussed through examples of several synthesized data sets of different plasma parameter profiles.