ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Blaise Faugeras
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 495-504
Technical Paper | doi.org/10.13182/FST15-171
Articles are hosted by Taylor and Francis Online.
This paper proposes a new fast and stable algorithm for the reconstruction of the plasma boundary from discrete magnetic measurements taken at several locations surrounding the vacuum vessel. The resolution of this inverse problem takes two steps. In the first one, we transform the set of measurements into Cauchy conditions on a fixed contour ΓO close to the measurement points. This is done by least-squares fitting a truncated series of toroidal harmonics functions to the measurements. The second step consists in solving a Cauchy problem for the elliptic equation satisfied by the flux in the vacuum and for the overdetermined boundary conditions on ΓO previously obtained with the help of toroidal harmonics. It is reformulated as an optimal control problem on a fixed annular domain of external boundary ΓO and fictitious inner boundary ΓI. A regularized Kohn-Vogelius cost function, which depends on the value of the flux on ΓI, measures the discrepancy between the solution to the equation satisfied by the flux obtained using Dirichlet conditions on ΓO and the one obtained using Neumann conditions. This function is minimized. The method presented here has led to the development of software, called VacTH-KV, which enables plasma boundary reconstruction in any tokamak.