ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Görler, A. E. White, D. Told, F. Jenko, C. Holland, T. L. Rhodes
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 537-545
Technical Paper | doi.org/10.13182/FST15-182
Articles are hosted by Taylor and Francis Online.
Over the last decade, plasma turbulence simulations based on gyrokinetic theory have reached an amazing degree of physical comprehensiveness and realism. In contrast to early gyrokinetic studies, which were restricted to qualitative statements, state-of-the-art investigations may now be compared quantitatively, therefore enabling validation and detailed analysis of their predictive capabilities. Here, particular attention is paid to outer-core L-mode discharges for which some previous gyrokinetic studies have found an underprediction of ion heat transport by almost one order of magnitude, the so-called shortfall. Carrying out radially local and nonlocal GENE simulations using actual plasma profiles and parameters and magnetohydrodynamic equilibria, and employing as much physics as available, only a mild underprediction is found, which can, furthermore, be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations is furthermore demonstrated by extensive comparison with experimental measurements. The latter involve sophisticated synthetic beam emission spectroscopy and correlation electron cyclotron emission data analysis. The agreement found between the measurements and the state-of-the-art postprocessed simulation data confirms the high degree of realism.