ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Nam-Jin Heo, Takuya Nagasaka, Takeo Muroga, Arata Nishimura, Kenji Shinozaki, Hideo Watanabe
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 470-474
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A380
Articles are hosted by Taylor and Francis Online.
The effect of the laser welding condition on properties of the weldment, such as bending, tensile and charpy impact properties were investigated in a V-4Cr-4Ti alloy (NIFS-HEAT- 2). The microstructural and microchemical development in the weldment was also investigated for mechanistic study of the impurity behavior during the welding. Increase in hardness occurred in the weld zone. The hardening was due to the dissolution of the large and small precipitates existed in the base metal before welding. The degree of hardening varied with a distance from the bead center. The absorption energy by the impact test increased with the decrease in the input power density during the laser welding. The impact absorption energy of the weld, which is similar to that of the base metal, was obtained by optimizing the welding condition.