ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yunmin Yang, Naoto Sekimura, Hiroaki Abe
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 460-464
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A378
Articles are hosted by Taylor and Francis Online.
In this study, MD simulations of compression process were carried for copper lattices with an interstitial type Frank loops. Slipping of prismatic dislocations was not observed for loops whose size ranges from 0.5nm to 3.6nm. For loops with a size of 0.5nm, atoms in loops were squeezed into the neighboring layer to form crowdion bundles along <110> directions, and then swept away by further deformation. For loops larger than 2nm, the movements of atoms in faulted layer were not homogeneously in one direction during elastic deformation process, its extrinsic stacking was broken into two intrinsic ones exist on two successive planes. After yielding the slipping on these two successive planes accommodated the plastic deformation and broke up the loop. The results in this work proved that, for low stacking fault energy FCC metals such as copper and stainless steel, to describe their deformation mechanism after neutron or heavy ion irradiation, unfaulting and prismatic slipping mechanism cannot apply for interstitial Frank loops, and the behavior of these loops have dependence on their size and Schmid factor.