ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yunmin Yang, Naoto Sekimura, Hiroaki Abe
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 460-464
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A378
Articles are hosted by Taylor and Francis Online.
In this study, MD simulations of compression process were carried for copper lattices with an interstitial type Frank loops. Slipping of prismatic dislocations was not observed for loops whose size ranges from 0.5nm to 3.6nm. For loops with a size of 0.5nm, atoms in loops were squeezed into the neighboring layer to form crowdion bundles along <110> directions, and then swept away by further deformation. For loops larger than 2nm, the movements of atoms in faulted layer were not homogeneously in one direction during elastic deformation process, its extrinsic stacking was broken into two intrinsic ones exist on two successive planes. After yielding the slipping on these two successive planes accommodated the plastic deformation and broke up the loop. The results in this work proved that, for low stacking fault energy FCC metals such as copper and stainless steel, to describe their deformation mechanism after neutron or heavy ion irradiation, unfaulting and prismatic slipping mechanism cannot apply for interstitial Frank loops, and the behavior of these loops have dependence on their size and Schmid factor.