ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
F. Warmer, C. D. Beidler, A. Dinklage, Y. Turkin, R. Wolf
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 727-740
Technical Paper | doi.org/10.13182/FST15-131
Articles are hosted by Taylor and Francis Online.
In fusion power plant studies, a high confinement improvement with respect to empirical scaling is often assumed in the design of compact machines. In this work, the limits of such a confinement enhancement are studied for a helical-axis advanced stellarator (HELIAS).
As a first exercise, the well-established power balance approach is used to investigate the impact of confinement enhancement (in terms of the ISS04 renormalization factor) on the required size of HELIAS power plants. It is found that both a lower (0.5) and an upper limit (1.5 to 1.7) exist for which, respectively, ignition is no longer possible or further confinement enhancement irrelevant due to physics limits.
In the second part of the work, a predictive neoclassical transport model is introduced and employed to determine a self-consistent confinement time based on transport modelling. It is found that the confinement enhancement with respect to the ISS04 scaling decreases in comparison to Wendelstein 7-X as the device is scaled to reactor size, dropping from ~2.5 to a range of 1.2 to 1.3. This behavior is explained with underlying scaling relations and transport effects. The results from both models are consistent and important for future HELIAS systems studies.