ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
R. Raman, T. R. Jarboe, J. E. Menard, S. P. Gerhardt, M. Ono, L. Baylor, W.-S. Lay
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 797-805
Technical Note | doi.org/10.13182/FST14-916
Articles are hosted by Taylor and Francis Online.
An important and urgent issue for ITER is predicting and controlling disruptions. Tokamaks and spherical tokamaks have the potential to disrupt. Methods to rapidly quench the discharge after an impending disruption is detected are essential to protect the vessel and internal components. The warning time for the onset of some disruptions in tokamaks could be <10 ms, which poses stringent requirements on the disruption mitigation system for reactor systems. In this proposed method, a cylindrical boron nitride projectile containing a radiative payload composed of boron, boron nitride, or beryllium particulate matter and weighing ~15 g is accelerated to velocities on the order of 1 to 2 km/s in <2 ms in a linear rail gun accelerator. A partially fragmented capsule is then injected into the tokamak discharge in the 3- to 6-ms timescale, where the radiative payload is dispersed. The device referred to as an electromagnetic particle injector has the potential to meet the short warning timescales for which a reactor disruption mitigation system must be built. The system is fully electromagnetic, with no mechanical moving parts, which ensures high reliability after a period of long standby.