ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Robin Miles, Mark Havstad, Mary LeBlanc, Ilya Golosker, Allan Chang, Paul Rosso
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 780-787
Technical Paper | doi.org/10.13182/FST14-904
Articles are hosted by Taylor and Francis Online.
External heat transfer coefficients were measured around a surrogate indirect inertial confinement fusion target based on the laser inertial fusion energy (LIFE) target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicated that heat transfer coefficients for this target, in the range of 25 to 50 W/m2·K, were consistent with theoretically derived heat transfer coefficients and are valid for use in calculation of target heating during flight through a fusion chamber.