ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Kazuhisa Yuki, Makoto Kawamoto, Munehito Hattori, Koichi Suzuki, Ken-ichi Sunamoto, Akio Sagara
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 715-719
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-115
Articles are hosted by Taylor and Francis Online.
In this study, in order to enhance heat transfer performance of helium gas flow for divertor cooling, high thermal conductivity porous media that are copper-particles-sintered ones are introduced as the referential porous media. In order to predict the heat transfer performance of He gas impinging jet flow with the porous medium, nitrogen gas is used as the simulant of helium gas in the pressure range of 0.1 MPa to 0.8 MPa. With the porous medium, the particle introduced is highly size-adjusted one of 1000 μm in diameter and the porosity is almost 30 %. The maximum heat transfer performance is evaluated by numerically simulating temperature field in a heat transfer block based on the measured temperature data. The experiments prove that the heat transfer coefficient of N2 gas impinging jet flow with the porous medium is much higher than that of common impinging jet flow without the porous medium from the view point of not only flow velocity but also pumping power.