ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Sims, R. S. Bean, C. K. Choi
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 711-714
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-991
Articles are hosted by Taylor and Francis Online.
A team at the Budker Institute of Nuclear Physics has been working for several years to develop the Gas Dynamic Trap Mirror Neutron Source (GDT-NS) for fusion materials irradiation. In 2010 they optimized the design for a transmutation mission forecasting a 16 meter DT plasma with a fusion power of 15 MW and neutrons preferentially emitted into blankets placed around the mirror turning points. While this remains to be demonstrated experimentally, it is intriguing to explore what could be done with a low fusion power neutron source.
The GDT-NS team has previously modeled the burning of minor actinides. The work presented here builds on this by examining the burning of plutonium starting with transuranics recovered from spent nuclear fuel. It was found that a GDT plutonium burner with two blankets could eliminate nearly the plutonium produced in a single light water reactor core per full power year, 249 kg. By increasing the average blanket power with regular refueling, this quantity was increased to 381 kg per full power year. Next followed a preliminary overview of a GDT disposition blanket to meet US treaty commitments in burning surplus military plutonium.