ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Teruya Tanaka, Hiroaki Muta, Yoshimitsu Hishinuma, Hitoshi Tamura, Takeo Muroga, Akio Sagara
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 705-710
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-110
Articles are hosted by Taylor and Francis Online.
Performance and applicability of hydride shielding materials are investigated in the helical reactor FFHR-d1 design. Performance of ZrH2 and TiH2 in fast neutron shielding are close to that of WC, which is most effective among candidate materials, for both in-vessel and out-vessel use. The investigation confirms that neutron shielding performance of a two-layered ferritic steel (FS)/ZrH2 or TiH2 shield is similar to that of a one-layered ZrH2 or TiH2 shield with the same total thickness. This shielding property is an important feature to maintain consistency with the structure design of FFHR-d1. In attenuation of direct neutrons from the core plasma in a bending duct, the hydride duct walls show superior performance compared with FS + B4C and WC duct walls. While controls for temperature (at <300 °C) and hydrogen concentration in the coolant gas would be required particularly for in-vessel use, the lower weight densities and quick decay of contact dose rates compared with other candidate materials would be reasons to select these hydride shielding materials.