ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dong Won Lee, Hyung Gon Jin, Eo Hwak Lee, Jae Sung Yoon, Suk Kwon Kim, Seungyon Cho, Hyun Gon Lee
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 680-683
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-979
Articles are hosted by Taylor and Francis Online.
A hypervapotron mockup was fabricated and used in the Neutral Beam Injection (NBI) heating system at KAERI. During the test, especially with the JAEA ion source, which has a focused beam and a long pulse, some failures in the mockup were experienced. Using the existing correlation for a critical heat flux (CHF), the incident CHF was assessed, in which the modified Tong-75 CHF correlation for the one-sided heat flux was used. In addition, using the conventional CFD and FEM codes such as ANASYS-CFX and ANYS-mechanical, the thermal lifetimes were evaluated according to the beam operation and water cooling conditions. The evaluated ICHF is 28.6 MW/m2 and is much higher than the loaded peak heat of about 8.7 MW/m2 at a 2.3 MW heat load. The cause of failure seems not to be the CHF considering the existing correlations. The thermal lifetimes were evaluated to be about 100 cycles and 11 cycles for 1.56 MW and 2.3 MW heat load conditions, respectively. When the dump heat is reached in the mockup frequently, it can fail in the corner of the inlet region below 11 cycles when a 2.3 MW heat is loaded.