ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Hiroki Shishido, Noritaka Yusa, Hidetoshi Hashizume, Yoshiki Ishii, Norikazu Ohtori
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 669-673
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-975
Articles are hosted by Taylor and Francis Online.
This study evaluates the physical properties of the molten salt Flinabe, using molecular dynamics simulations to discuss its applicability to a fusion blanket system. More specifically, the simulations calculate the density and viscosity of Flinabe to facilitate further discussion of the applicability from the viewpoint of the heat removal of the first wall. The results of the simulations are compared with data reported in earlier publications, which support the validity of the simulations. This study reveals that Flinabe tends to have lower viscosity than Flibe even when they contain almost the same BeF2. Analyzing the results of the simulations confirms that the degree of polymerization in Flinabe correlates with its viscosity, as that in Flibe does. The analyses also revealed, however, that the correlation in the case of Flibe is not directly applicable to the case of Flinabe.