ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Satake, H. Sawamura, M. Kimura, T. Kunugi
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 640-643
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-956
Articles are hosted by Taylor and Francis Online.
In this work, a simulation is presented that plays an important part in estimating the characteristics of cooling in a blanket used for high-temperature plasma in a fusion reactor. The objective of this study is to perform a large-scale direct numerical simulation (DNS) on the heat transfer of turbulent flow of the coolant materials assumed gas flow. The coolant flow conditions in a fusion reactor are assumed to be defined by a Reynolds number of a higher order. To investigate the effect of Reynolds number on the scalar structures, the Reynolds number based on a friction velocity and a pipe radius was set to be Reτ = 1050. The numbers of the computational grid points used for Reτ= 1050 were 2048 × 512 × 768 in the z−, r−, and ϕ-directions, respectively. In this work, details on the turbulent quantities such as the mean flow, turbulent stresses, turbulent kinetic energy budget, and the turbulent statistics were obtained.