ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S. Satake, H. Sawamura, M. Kimura, T. Kunugi
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 640-643
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-956
Articles are hosted by Taylor and Francis Online.
In this work, a simulation is presented that plays an important part in estimating the characteristics of cooling in a blanket used for high-temperature plasma in a fusion reactor. The objective of this study is to perform a large-scale direct numerical simulation (DNS) on the heat transfer of turbulent flow of the coolant materials assumed gas flow. The coolant flow conditions in a fusion reactor are assumed to be defined by a Reynolds number of a higher order. To investigate the effect of Reynolds number on the scalar structures, the Reynolds number based on a friction velocity and a pipe radius was set to be Reτ = 1050. The numbers of the computational grid points used for Reτ= 1050 were 2048 × 512 × 768 in the z−, r−, and ϕ-directions, respectively. In this work, details on the turbulent quantities such as the mean flow, turbulent stresses, turbulent kinetic energy budget, and the turbulent statistics were obtained.