ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Nogami, W. Guan, M. Fukuda, H. Tanigawa, A. Hasegawa
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 607-611
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-929
Articles are hosted by Taylor and Francis Online.
To improve the fatigue properties evaluation of the joint region of the fusion reactor blanket, the effect of the non-uniform distribution of the microstructure and strength on the fatigue properties of the electron beam weld joint of the F82H steel was investigated by the fatigue test and the numerical simulation of the deformation under the test. The fatigue life of the joint was approximately 10−20 % of that of the base metal. The fracture under the fatigue test occurred around the over-tempered heat affected zone (the region with the lowest hardness). One of the reasons of the shorter fatigue life of the joint could be the higher crack growth rate induced by the peak strain around the over-tempered heat affected zone due to the non-uniform deformation.