ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Yasunori Iwai, Hitoshi Kubo, Yusuke Ohshima, Hiroshi Noguchi, Yuki Edao, Junichi Taniuchi
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 596-600
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-921
Articles are hosted by Taylor and Francis Online.
We have developed two types of hydrophobic platinum honeycomb catalyst to be used for tritium oxidation reactors. One is the hydrophobic platinum catalyst on a metal honeycomb. The other is the hydrophobic platinum catalyst on a ceramic honeycomb made of silicon carbide. The activity of these catalysts was evaluated with tritium. The effects of hydrogen concentration (0.02 to 1000 ppm) and water concentration (100 or 22000 ppm) in the gaseous feed on the activity were investigated. The fine platinum particles around a few nanometers significantly improve the catalytic activity for the oxidation tritium at a very small concentration. The hydrogen concentration in the gaseous feed slightly affects the overall reaction rate constant for hydrogen oxidation. Due to the competitive adsorption of hydrogen and water molecules on platinum surface, the overall reaction rate constant has the bottom value at the hydrogen concentration of 100 ppm with the dry feed gas. We have experimentally confirmed the activity of these honeycomb catalysts is as good as that of granular hydrophobic catalyst. The results support the hydrophobic honeycomb catalysts can be used for tritium oxidation reactors.