ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
D. D. Qu, W. W. Basuki, J. Gibmeier, R. Vaßen, J. Aktaa
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 578-581
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-113
Articles are hosted by Taylor and Francis Online.
Reduced activation Ferritic/Martensitic (RAFM) steels, e.g. EUROFER are to be used as structural material for the First Wall (FW) of future fusion power plants. The interaction between plasma and FW, especially physical sputtering will limit the FW lifetime under normal operation. Therefore tungsten coating is selected to protect the FW due to its very low sputtering yield and low activation. However, the mismatch in thermo-physical properties between tungsten and EUROFER can lead to large residual thermal stresses and even failure. To overcome the issue of erosion a protective tungsten coating with a functionally graded (FG) tungsten/EUROFER layer (FG tungsten/EUROFER coating system) on EUROFER substrate will be developed and optimized.
Non-linear finite element simulations are performed to predict optimal parameters of the coating system. Thereby the potential of the FG-layer in reducing inelastic strains and improving lifetime is demonstrated, and the investigated thickness of FG-layer is suggested. Based on the simulation results samples are fabricated by vacuum plasma spraying (VPS) with three different thicknesses of FG-layer. The microstructural observations revealed that the coating system has fine gradation and variable thickness as designed, low porosity, as well as a sound interface. Berkovich and Vickers hardness identify basic properties of those layers.