ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. C. Xiao, Jing Zhao, X. Heng, X. Y. Sheng, Z. Zhou, Y. Yang
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 566-572
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-907
Articles are hosted by Taylor and Francis Online.
In this paper, an innovative natural uranium-thorium fuel fusion-fission hybrid reactor (FFHR) design aiming at closed thorium-uranium fuel cycle, and which could operate with high energy gain, fast 233U breeding rate and tritium self-sufficiency, is presented. The reactor consists of two main modules, i.e. natural uranium module and thorium module, which are placed alternately in the blanket’s toroidal direction. Uranium module plays the role of energy generation and neutron multiplication at the initial stage. Excess neutrons are then used to drive the thorium module to breed 233U. After the 233U inventory reaches a certain level, the uranium module is then replaced by new thorium fuel module. The system is transition to the all thorium fueled operating mode. With appropriately selected thorium fuel to water volumetric ratio, the system could then be started by the limited bred 233U. The blanket could reach thorium-uranium closed fuel cycle with high energy gain and tritium self-sufficiency. The system could burn up about 90 tonnes 232Th at the end of 60 years operating.