ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
B. Zhao, B. H. Mills, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 561-565
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-122
Articles are hosted by Taylor and Francis Online.
Three-dimensional numerical simulations of a test section modeling a single module of the helium-cooled modular divertor with multiple jets (HEMJ) design were performed to complement experimental studies at nearly prototypical conditions as part of the joint US-Japan effort on plasma-facing components evaluation by tritium plasma, heat, and neutron irradiation experiments (PHENIX). The Spalart-Allmaras turbulence model gave numerical predictions of the cooled surface temperature that were in good agreement with experimental estimates from a new helium loop. The simulations showed that spatial variations in incident heat flux, at least in the form of a Gaussian function, had a negligible effect on cooled surface temperatures.
Our initial results indicate that the numerical predictions of the thermal performance of a single HEMJ module are in reasonable agreement with the experimental studies. The simulations do, however, predict slightly higher heat transfer coefficients (HTCs) than the experimental studies, presumably because they do not account for thermal losses. The HTC appears to be essentially independent of incident heat flux, suggesting that the model can be used to investigate parameters that cannot be determined experimentally in many cases, such as the local HTC and temperature distributions within the divertor pressure boundary, at prototypical conditions.