ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
B. Zhao, B. H. Mills, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 561-565
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-122
Articles are hosted by Taylor and Francis Online.
Three-dimensional numerical simulations of a test section modeling a single module of the helium-cooled modular divertor with multiple jets (HEMJ) design were performed to complement experimental studies at nearly prototypical conditions as part of the joint US-Japan effort on plasma-facing components evaluation by tritium plasma, heat, and neutron irradiation experiments (PHENIX). The Spalart-Allmaras turbulence model gave numerical predictions of the cooled surface temperature that were in good agreement with experimental estimates from a new helium loop. The simulations showed that spatial variations in incident heat flux, at least in the form of a Gaussian function, had a negligible effect on cooled surface temperatures.
Our initial results indicate that the numerical predictions of the thermal performance of a single HEMJ module are in reasonable agreement with the experimental studies. The simulations do, however, predict slightly higher heat transfer coefficients (HTCs) than the experimental studies, presumably because they do not account for thermal losses. The HTC appears to be essentially independent of incident heat flux, suggesting that the model can be used to investigate parameters that cannot be determined experimentally in many cases, such as the local HTC and temperature distributions within the divertor pressure boundary, at prototypical conditions.