ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
B. H. Mills, B. Zhao, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 541-545
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-116
Articles are hosted by Taylor and Francis Online.
A new helium (He) loop was used to study the helium-cooled modular divertor with multiple jets (HEMJ) at incident heat fluxes q″ ≤ 6.6 MW/m2 as part of the joint US-Japan effort on plasma-facing components evaluation by tritium plasma, heat, and neutron irradiation experiments (PHENIX). These studies were performed at prototypical pressures of 10 MPa and inlet temperatures ranging from 30 °C to 300 °C. The effect of varying the distance between the inner jets cartridge and the outer shell from 0.44 to 0.9 mm was also investigated.
The Nusselt number Nu results for two different tungsten-alloy test sections were in good agreement for q″ = 1.5−6.6 MW/m2. The experiments also suggest that the loss coefficient KL is essentially constant. These Nu and KL results were used to estimate the maximum heat flux q′′max that can be accommodated by the divertor under prototypical conditions and the coolant pumping power as a fraction of the incident thermal power β. The agreement over the broad range of experimental parameters studied suggests that these results at near-prototypical conditions can be extrapolated with reasonable confidence to the operating conditions expected for the HEMJ design.