ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Misaki Sato, Kenta Yuyama, Xiao-Chun Li, Naoko Ashikawa, Akio Sagara, Naoaki Yoshida, Takumi Chikada, Yasuhisa Oya
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 531-534
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-971
Articles are hosted by Taylor and Francis Online.
The effect of heating temperature on deuterium (D) retention behavior for helium (He+) / carbon (C+) implanted tungsten (W) was studied. It was found that D retention behavior for He+ implanted W was not limited by the size of the He bubbles. The microstructure observation showed that the large helium bubbles were formed near the surface for He+ implanted W at 1173 K, suggesting that the D retention was reduced by the growth of the helium bubbles. In addition, to evaluate the effect of implantation ion species at high temperature, D retention behavior for He+ implanted W at 1173 K was compared with that for C+ implanted W at 673 K. It is concluded that the D retention depends on ion species, which makes different kinds of damages like He bubbles for He+ implantation and vacancy-ion complex (voids) for C+ implantation.