ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
A. Khodak, G. Loesser, Y. Zhai, V. Udintsev, J. Klabacha, W. Wang, D. Johnson, R. Feder
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 521-525
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-955
Articles are hosted by Taylor and Francis Online.
Numerical simulations of the ITER Diagnostic First Wall (DFW) were performed using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the system. Analysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution of the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX. Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis.
Results allowed to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.