ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Kazuya Furuichi, Kazunari Katayama, Hiroyuki Date, Toshiharu Takeishi, Satoshi Fukada
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 458-464
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-969
Articles are hosted by Taylor and Francis Online.
In this study, tritiated water was poured in a packed bed of natural soil and subsequently distilled water was poured in the bed to recover tritium retained in the soil at room temperature. From tritium balance, 22.5 % (7.1 MBq) of input tritium (31.5 MBq) was retained in the soil bed. By distilled water purge, 70 % (5 MBq) of retained tritium was recovered but 30% (2.1MBq) was left. To recover residual tritium, the soil was immersed in distilled water for 531 days but the amount of tritium released to distilled water was slight (0.04 MBq). A part of the soil immersed in the water was taken out and heated up to 300°C under humid oxygen atmosphere. Tritium release terminated at about 50 hours. 11 % (0.23 MBq) of retained tritium was released. By heating to 1000°C, the release amount of tritium increased proportionally to the time and additional 4% (0.09 MBq) was released at 5 hours. The desorption rates of tritium in each process was quantified.
Tritium is quite slowly released from the natural soil exposed to tritiated water in water at room temperature. However, a long time heating by 1000°C would be required to try to recover all tritium from the contaminated soil positively, although tritium recovery was not completed in this work.