ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yasufumi Tanaka, Heun Tae Lee, Yoshio Ueda, Masayoshi Nagata, Yusuke Kikuchi, Satoshi Suzuki, Yohji Seki
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 433-437
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-109
Articles are hosted by Taylor and Francis Online.
In this study, surface damaged W monoblocks (melting and cracking) by a pulsed plasma gun and an e-beam devices were exposed to cyclic heat loads (simulating normal heat loads and slow transients) and pulsed heat loads (simulating ELMs) to observe the effects of surface damage on surface erosion and heat removal capability. Heat load tests simulating the normal heat load (10 MW/m2, 10 sec, 300 cycles) and the slow transient (~20 MW/m2, 10 sec, 300 cycles) were performed by the e-beam. The surface morphology changes after the heat load tests were observed using laser scanning microscopy and FE-SEM. After e-beam irradiation of ~20 MW/m2, the longitudinal cracks crossing over entire monoblocks appeared on the surfaces of all monoblocks. Recrystallization and additional crack formation were also observed on the surface. However, there was no significant change of heat removal capability. In the additional pulsed heat load test, the energy fluence of 0.042-0.30MJ/m2 was applied with pulse numbers of 103 and 104.The surface morphology changes after laser irradiation were observed using laser scanning microscope. After laser irradiation, the grain ejection occurred above a certain energy fluence (~25 % of melting threshold).