ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Satoshi Ito, Hidetoshi Hashizume
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 428-432
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-104
Articles are hosted by Taylor and Francis Online.
This paper discusses thermal design of a segmented high-temperature superconducting (HTS) magnet depending on geometry of HTS conductors, cooling system (indirect cooling or partial forced flow cooling), cooling techniques and joint resistance. For the purpose, three-dimensional heat conduction analysis was carried out with a finite element code, modeling geometry and operating condition of helical coils in a helical fusion reactor, FFHR as an example. In this analysis, liquid neon was assumed to be used as a coolant at an operating temperature of 25 K. As a heat removal technique for the joint, cooling system of a cryogenic liquid coolant with metal porous media has been proposed and it was also modeled in the heat conduction analysis. The numerical results showed that stainless steel jacket and a low thermal conductivity insulator determine temperature distribution and any cooling techniques cannot contribute to prevent the temperature rise when joint resistance increases in the case of the indirect cooling system. On the other hand, a high performance cooling technique such as metal porous media-inserted channel is effective to reduce temperature rise in the partial force cooling system.