ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Youji Someya, Kenji Tobita, Hiroyasu Utoh, Nobuyuki Asakura, Yoshiteru Sakamoto, Kazuo Hoshino, Makoto Nakamura, Shinsuke Tokunaga
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 423-427
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-101
Articles are hosted by Taylor and Francis Online.
We have considered a strategy for reducing the radioactive waste generated by the replacement of in-vessel components, such as blanket segments and divertor cassettes, for the fusion DEMO reactor. In the basic case, the main parameters of the DEMO reactor are a major radius of 8.2 m and a fusion power of 1.35 GW. Blanket segments and divertor cassettes should be replaced independently, as their lifetimes differ. A blanket segment comprises several blanket modules mounted to a back-plate. The total weight of an in-vessel component is estimated to be about 6,648 ton (1,575, 3,777, 372, and 924 ton of blanket module, back-plate, conducting shell, and divertor cassette, respectively). The lifetimes of a blanket segment and a divertor cassette are assumed to be 2.2 years and 0.6 years, respectively, and 52,487 tons of waste is generated over a plant life of 20 years. Therefore, there is a concern that the contamination-control area for radioactive waste may need to increase due to the amount of waste generated from every replacement. This paper proposes a management scenario to reduce radioactive waste. When feasible and relevant, back-plates of blanket segment and divertor cassette bodies (628 ton) should be reused. Using the three-dimensional neutron transportation code MCNP, the displacement per atom (DPA) of the SUS316LN back-plates is 0.2 DPA/year and that of the F82H cassette bodies is 0.6 DPA/year. Therefore, the reuse of back-plates and cassette bodies would be possible if re-welding points are arranged under neutron shielding. We found that radioactive waste could be reduced to 20 % when tritium breeding materials are recycled. Finally, we propose a design for the DEMO building that uses a hot cell and temporary storage.