ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Claire Luttrell, Tim Bigelow, Ethan Coffey, Ira Griffith, Greg Hanson, Arnold Lumsdaine, Alex Melin, Chuck Schaich
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 402-406
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-980
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system will produce a high-intensity beam of electromagnetic radiation for plasma heating. A total of 20 MW of power will be transferred from 170 GHz gyrotrons through multiple transmission lines. The transmission lines consist of evacuated, aluminum, circularly corrugated waveguides that will each transmit up to 1.5 MW for up to 3600 seconds. The waveguides, as well as mirror and polarizer components, will be actively water cooled in order to support the heat load from the long-pulse high-power radiation. Transmission lines will be as long as 200 meters, made up of individual lengths of 2 to 4 meter pieces that are joined by couplings. These couplings must retain high vacuum during operation, and maintain a very high degree of straightness between adjacent waveguide pieces. Analyses have been performed to examine various parameters of the design of these couplings, and confirm that stringent criteria are met during installation and operation. Further couplings are used to join the waveguide to other transmission line components, such as miter bends, expansion units, and switches. All of these are analyzed to confirm structural integrity during operation.