ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Yasuko Kawamoto, Hiroyuki Nakaya, Hideaki Matsuura, Kazunari Katayama, Minoru Goto, Shigeaki Nakagawa
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 397-401
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-977
Articles are hosted by Taylor and Francis Online.
To start up a fusion reactor, it is necessary to provide a sufficient amount of tritium from an external device. The fusion DEMO reactor is planned to start up in the 2030s. Herein, methods for supplying the reactor with tritium are discussed. For the initial startup of the fusion reactor, use of a high temperature gas-cooled reactor (HTGR) as a tritium production device has been proposed. So far, the analyses have been focused only on the operation in which fuel is exchanged at stated periods (batch) using the block type HTGR. In this paper, to improve the performance of tritium production, properties of the HTGR are studied from the viewpoint of continuous operation for several conditions. In continuous operation, for example, in the pebble bed type HTGR, it is possible to design an operation that has no time loss for refueling. The pebble bed modular reactor (PBMR) and the gas turbine high temperature reactor of 300 MWe nominal capacity (GTHTR300) are assumed as the calculation and comparison targets, and simulation is made using the continuous-energy Monte Carlo transport code MVP-BURN. It is shown that the continuous operation using the pebble bed type HTGR has almost the same tritium productivity compared with the batch operation using the block type HGTR. The issues for pebble bed type HTGR as a tritium production device are discussed.