ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. T. Fisher, J. W. Leachman
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 388-391
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-970
Articles are hosted by Taylor and Francis Online.
Flow and heat transfer measurements of solid hydrogenic materials inside twin screw extruders are not available. Fusion tokamaks like ITER require fuel pellet injection at 99.9% reliability which requires validated twin screw extruder throughput models for operation. The throughput of an extruder is limited by the amount of leakage flow through clearance gaps which depends on flow properties that vary strongly with temperature for hydrogenic materials. A Diagnostic Twin Screw Extruder (DTSE) has been built to measure azimuthal and axial temperature distributions as well as torque, cooling power, and screw speed for H2, D2, and Ne extrusions. In this paper the experimental procedure for the DTSE is described and azimuthal temperature measurements at three locations along the screws are discussed. The results show variations in temperature as large as 0.5 K azimuthally and >0.5 K axially. The overall temperatures stay close to the solidification temperature and therefore support high backflow and explain extrudate stall scenarios experienced in other hydrogenic twin screw extruders. This temperature data is therefore useful to size tolerance gaps in future extruder designs and enables refinement of predictive models for continuous operation.