ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. T. Fisher, J. W. Leachman
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 388-391
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-970
Articles are hosted by Taylor and Francis Online.
Flow and heat transfer measurements of solid hydrogenic materials inside twin screw extruders are not available. Fusion tokamaks like ITER require fuel pellet injection at 99.9% reliability which requires validated twin screw extruder throughput models for operation. The throughput of an extruder is limited by the amount of leakage flow through clearance gaps which depends on flow properties that vary strongly with temperature for hydrogenic materials. A Diagnostic Twin Screw Extruder (DTSE) has been built to measure azimuthal and axial temperature distributions as well as torque, cooling power, and screw speed for H2, D2, and Ne extrusions. In this paper the experimental procedure for the DTSE is described and azimuthal temperature measurements at three locations along the screws are discussed. The results show variations in temperature as large as 0.5 K azimuthally and >0.5 K axially. The overall temperatures stay close to the solidification temperature and therefore support high backflow and explain extrudate stall scenarios experienced in other hydrogenic twin screw extruders. This temperature data is therefore useful to size tolerance gaps in future extruder designs and enables refinement of predictive models for continuous operation.