ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ethan Coffey, Tim Bigelow, Ira Griffith, Greg Hanson, Arnold Lumsdaine, Claire Luttrell, David Rasmussen, Chuck Schaich, Bill Wolframe
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 383-387
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-962
Articles are hosted by Taylor and Francis Online.
Finite element analysis calculations are performed to determine the temperature profile in sections of the ITER Electron Cyclotron Heating (ECH) transmission line waveguide. Each aluminum, corrugated waveguide transmission line will transmit up to 1.5 MW of electromagnetic radiation over roughly 200 meters from a 170 GHz gyrotron to heat the plasma in the tokamak. The “ridged tube” waveguide has integral water cooling traces which are lined with copper tubing. Each transmission line includes miter bends which may be actively cooled and waveguide couplings, where the waveguide cannot be actively cooled due to coupling hardware. The amount of cooling water available is limited, so determining the required amount of water in the cooling lines is essential. Finite element computational analyses are performed to determine the effect of the heat load and water cooling on the temperature profile of the waveguide in various steady-state cases.