ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hongsuk Chung, Jongchul Park, Daeseo Koo, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 368-372
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-944
Articles are hosted by Taylor and Francis Online.
A tritium plant for nuclear fusion power plants consists of an SDS (Storage and Delivery System), an ISS (Hydrogen Isotope Separation System), a TEP (Tokamak Exhaust Processing system), and an ANS (tritium plant Analytical System). Korea has been developing an SDS. The main purpose of this tritium storage and delivery system is to store and supply the D-T gas needed for DT plasma operation and to provide the necessary infrastructure for short- and long-term storage of large amounts of tritium. We have been developing tritium storage beds for the SDS.
The primary role of the metal hydride beds in the SDS is to store and supply D-T fuel during DT plasma operation. ZrCo and depleted uranium (DU) have been extensively studied. Compared to the use of ZrCo, which is disproportionate at temperatures of higher than 350°C, DU hydride can be heated up to very high temperatures sufficient to pump hydrogen isotopes without using gas compressors. Our experimental apparatus used to test the experimental DU bed consists of a tank that stores and measures the hydrogen, and a DU bed used for the hydriding/dehydriding of hydrogen. Our DU bed is a horizontal double-cylinder type with sintered metal filters. The bed is composed of primary and secondary vessels. The primary vessel contains a DU, and a vacuum layer is formed between the primary and secondary vessels. In this study, we present our recent experimental results on the direct delivery of hydrogen isotopes from a DU hydride bed. We also present the effect of the initial bed temperature and impurity gas on the hydriding rates.