ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hongsuk Chung, Jongchul Park, Daeseo Koo, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 368-372
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-944
Articles are hosted by Taylor and Francis Online.
A tritium plant for nuclear fusion power plants consists of an SDS (Storage and Delivery System), an ISS (Hydrogen Isotope Separation System), a TEP (Tokamak Exhaust Processing system), and an ANS (tritium plant Analytical System). Korea has been developing an SDS. The main purpose of this tritium storage and delivery system is to store and supply the D-T gas needed for DT plasma operation and to provide the necessary infrastructure for short- and long-term storage of large amounts of tritium. We have been developing tritium storage beds for the SDS.
The primary role of the metal hydride beds in the SDS is to store and supply D-T fuel during DT plasma operation. ZrCo and depleted uranium (DU) have been extensively studied. Compared to the use of ZrCo, which is disproportionate at temperatures of higher than 350°C, DU hydride can be heated up to very high temperatures sufficient to pump hydrogen isotopes without using gas compressors. Our experimental apparatus used to test the experimental DU bed consists of a tank that stores and measures the hydrogen, and a DU bed used for the hydriding/dehydriding of hydrogen. Our DU bed is a horizontal double-cylinder type with sintered metal filters. The bed is composed of primary and secondary vessels. The primary vessel contains a DU, and a vacuum layer is formed between the primary and secondary vessels. In this study, we present our recent experimental results on the direct delivery of hydrogen isotopes from a DU hydride bed. We also present the effect of the initial bed temperature and impurity gas on the hydriding rates.