ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Dario Carloni, Bruno Gonfiotti, Sandro Paci, Lorenzo V. Boccaccini
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 353-357
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-924
Articles are hosted by Taylor and Francis Online.
The exploitation of Fusion as energy source requires also the demonstration of a limited impact in terms of risk to the staff, to the public, and to the environment, well below the limits established by international committees and national safety authorities. Therefore, a systematic safety analysis has to follow the design development to demonstrate that the safety objectives are met for each proposed solution. This analysis points out the dominant accident sequences and outlines the possible prevention, protection and mitigation actions and their associated systems. This analysis points out the dominant accident sequences and outlines the possible prevention, protection and mitigation actions and their associated systems. One of the most challenging accidents is a large break Loss of Coolant Accident (LOCA) of the Primary Heat Transfer System (PHTS) outside the Vacuum Vessel (VV), due to the possible consequences in terms of radiological releases to the environment. However, because of the relative small radiological inventory and to the lower decay heat density, the risk associated with a break of the primary cooling loop in a fusion reactor is lower than the risk of the same event in a fission reactor. Nevertheless the consequent peak of pressure in the Expansion Volume located within the Tokamak Building could severely impact the confinement function, hence the overall safety of the plant. For this purpose a numerical assessment of a blanket PHTS ex-vessel LOCA has been carried out considering two possible layout solutions. This analysis has been performed employing MELCOR 1.8.2 and aims to support the design of the Blanket and its PHTS with some safety-related considerations.