ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Alice Ying, Hongjie Zhang, Mu-Young Anh, Youngmin Lee
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 346-352
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-908
Articles are hosted by Taylor and Francis Online.
First-of-a-kind numerical simulation was performed to evaluate time dependent tritium transport properties for Korea’s HCCR (Helium-Cooled Ceramic Reflector) TBM (Test Blanket Module) design under ITER inductive operating conditions. The estimation of tritium inventories in various components of the HCCR submodule and its permeation amount into the helium coolant was obtained through three computational models involving: 1) a 3D FW standalone model where diffusion and permeation into FW He coolant through tritium ion implantation was studied, 2) a 2D Poloidal-Radial (P-R) mid-plane model where the effect of increased tritium concentration in the purge gas stream was accounted for, and 3) a 2D Toroidal-Radial (T-R) mid-plane model to study tritium concentration accumulation in the He coolant. The analysis shows that tritium inventory in the breeder reaches an equilibrium value in about 10 cycles, and is about 0.373 mg per submodule. Tritium inventory in the ferritic steel structure reaches its equilibrium value in less than 10 cycles, and has about 0.0012 mg per submodule at the end of the plasma burn. The amount of the tritium permeated into helium coolant is about 1.8% of the amount of tritium produced per cycle.