ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Stefano Carli, Roberto Bonifetto, Tiago Pomella Lobo, Laura Savoldi, Roberto Zanino
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 336-340
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-986
Articles are hosted by Taylor and Francis Online.
In a tokamak with superconducting magnets, the operation of the cryoplant requires the knowledge of the heat load coming from the cryogenic loops that cool the different magnet systems.
Artificial Neural Networks (ANNs) are applied for the first time to the ITER Toroidal Field (TF) magnets. Two different models are developed: 1) a simpler one, aiming at checking the effects of the different operating scenarios on the cryoplant; 2) a more complex one, aiming at helping in the design of suitable control strategies for the magnet operation, to reduce the variation of the heat load to the cryoplant.
The developed ANNs are suitably trained based on results obtained with the state-of-the-art thermal-hydraulic code 4C, that simulates the TF magnet response when subject to a broad spectrum of heat load variations. The predictive capability of the resulting ANN models is tested in different operating scenarios.