ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. K. Combs, L. R. Baylor, C. R. Foust, A. Frattolillo, M. S. Lyttle, S. J. Meitner, S. Migliori
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 319-325
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-925
Articles are hosted by Taylor and Francis Online.
An existing pipe gun test facility at ORNL was used for an experimental study of propellant gas loads required for ITER-relevant pellet injection, with the key objective of determining the minimal amount of gas required for optimal pellet speeds. Two pellet sizes were tested, with nominal 4.4 and 3.2 mm diameters comparable to pellets planned for fueling and ELM pacing in ITER, respectively. A novel scheme was used to freeze solid pellets from room temperature gas; this facilitated operations at higher temperatures (14.5 to 16.5 K, similar to those planned for extruder operations for ITER pellet injectors) and thus lower pellet breakaway pressures and gas loads. Most of the single-shot D2 pellet tests were carried out with a relatively low H2 propellant gas load of ~0.0133 bar-L. Some limited testing was also carried out with a mixed propellant gas that consisted mostly of D2, which is more representative of the gas that will be used for ITER pellet injection. In testing it was found that this reference gas load resulted in pellet speeds in close proximity to a speed limit (~300 m/s) previously determined in a series of tests with D2 pellets shot through a mock-up of the curved guide tubes planned for the ITER installation (for pellet fueling from the magnetic high-field side). The equipment, operations, and test results are presented and discussed, with emphasis on the relevance for ITER operations.